ILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier-Stokes Equations

نویسندگان

  • Igor N. Konshin
  • Maxim A. Olshanskii
  • Yuri V. Vassilevski
چکیده

Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for nonsymmetric saddle-point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents and examines an extension for nonsymmetric matrices of the Tismenetsky–Kaporin incomplete factorization. It is shown that in numerically challenging cases of higher Reynolds number flows one benefits from using this two-parameter modification of a standard threshold ILU preconditioner. The performance of the ILU preconditioners is studied numerically for a wide range of flow and discretization parameters, and the efficiency of the approach is shown if threshold parameters are chosen suitably. The practical utility of the method is further demonstrated for the haemodynamic problem of simulating blood flow in a right coronary artery of a real patient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis and Scientific Computing Preprint Seria ILU preconditioners for non-symmetric saddle point matrices with application to the incompressible Navier-Stokes equations

Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for non-symmetric saddle point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents an...

متن کامل

A comparison of preconditioners for incompressible Navier-Stokes solvers

We consider solution methods for large systems of linear equations that arise from the finite element discretization of the incompressible Navier–Stokes equations. These systems are of the so-called saddle point type, which means that there is a large block of zeros on the main diagonal. To solve these types of systems efficiently, several block preconditioners have been published. These types ...

متن کامل

EVIEW A RTICLE Preconditioners for Incompressible Navier - Stokes Solvers †

In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard’s method. It is shown that block preconditioners form an excellent approach for the solution, however if the grids are not to fine preconditioning with a Saddle point ILU matrix (SILU) ma...

متن کامل

Preconditioners for Generalized Saddle-point Problems Preconditioners for Generalized Saddle-point Problems *

We examine block-diagonal preconditioners and efficient variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. We consider the general, nonsymmetric, nonsingular case. In particular, the (1,2) block need not equal the transposed (2,1) block. Our preconditioners arise from computationally efficient splittings of the (1,1) block. We provide analyses for the...

متن کامل

The Gcr-simple Solver and the Simple-type Preconditioning for Incompressible Navier-stokes Equations

The discretization of incompressible Navier-Stokes equation leads to a large linear system with a nonsymmetric and indefinite coefficient matrix. Many methods are known to overcome these difficulties: Uzawa method, SIMPLE-type methods, penalty method, pressure correction method, etc. In this paper, Krylov accelerated versions of the SIMPLE(R) methods: GCR-SIMPLE(R) are investigated, where SIMPL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015